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Abstract. Possible experimental manifestations of the conuibution of heavy Kaluza-Klein 
padicles, within a simple scalar model in six dimensions with spherical compactification, are 
studied. The approach is based on the assumption that ihe inverse radius L-l of the space of 
exha dimensions is of the order of the scale of the supersymmetry breaking Msusy - 1 + 10 TeV, 
The total cross section of the scanering of two light panicles is calculated to one-loop order and 
the effect of the Kaluza-Klein tower is shown to be noticeable for energies J3 2 1.4L-’. 

1. Introduction 

Many of the modem approaches extending the standard model include the hypothesis 
multidimensionality of spacetime (e.g. Kaluza-Klein-type theories, supergravity, supershing 
theory; see for instance [l] and [2], and references therein). The extra dimensions are 
supposed to be compactified, i.e. ‘curled up’ to a compact manifold of a characteristic scale 
L. 

Various aspects of multidimensional models of gravity and particle interactions at the 
classical level have been intensively studied (see, for example, [3,4] for reviews). Some 
issues related to quantum features of Kaluza-Klein theories were considered in [5-91. One 
of the interesting problems is the search for and calculation of characteristic effects related 
to the multidimensional nature of Kaluza-Klein theories. In this paper, we consider one of 
these effects, which is essentially quantum. 

As is well known, by performing mode expansion, a multidimensional model on the 
spacetime M4 x K (where K is a compact manifold) can be represented as an effective 
theory on M4 with an infinite set of particles, which is often referred to as the Kaluza; 
Klein tower of particles or modes. The spectrum of the four-dimensional theory depends 
on the topology and geometry of K .  The sector of the lowest state (of the zero mode) 
describes light particles (in the sense that their masses do not depend on L-’) and coincides 
with the dimensionally reduced theory. Higher modes correspond to heavy particles with 
masses - L-’ called pyrgons (from the Greek aupyos, for ladder). It is the contribution 
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of these pyrgons to physical quantities that might give evidence about the existence of extra 
dimensions. 

As was demonstrated in [IO, 111, in spite of the infinite number of fields in the theory 
on M4-and, related to this, non-renormalizability-its contributions of the heavy particles 
after subtraction of the ultraviolet divergences decouple if the energy of the process is 
sufficiently small that sL << 1. This ensures that the low-energy limit of a Kaluza-Klein 
model is simply the dimensionally reduced theory with zero modes only. When the energies 
are comparable to L-' .  the heavy-mode contributions are not negligible. One might expect 
that, due to the infinite number of states in the Kaluza-Klein tower, some accumulation 
heavy-mode contributions takes place, which would lead to a noticeable effect even for 
energies f i  e 2Ml (MI is the mass of the first heavy mode) when direct production of 
the excited states is still not possible. In fact, because of the decoupling, only a few of the 
lowest states (with masses up to about 1OL-') will contribute essentially at these energies. 

The purpose of our paper is to demonstrate that a noticeable effect does indeed appear. 
With this aim, we will choose a simple scalar q$4-model on the six-dimensional spacetime 
M4 x Sz. The space of extra dimensions is the two-dimensional sphere Sz of radius L upon 
which there is an S0(3)-invariant metric. Study of quantum effects on spheres (mainly 
calculations of the Casimir effect and effective potentials) can be found, for example, in 
[6,7]. In this paper, we will obtain the total cross section for the (2 light particles) -+ 
(2 light particles) scattering process. Pyrgons do not contribute at the tree level in this model. 
Actually, the discussion given in section 2 shows that this statement is rather general and 
is valid, for example, for any scalar model. Thus, the one-loop correction is important for 
including the effect due to the presence of heavy Kaluza-Klein modes. We will calculate 
the one-loop contribution and analyse it for a wide range of scattering-particle energies. A 
similar problem for torus compactification (i.e. when the space of extra dimensions K is 
the two-dimensional torus T z )  was considered in [U]. We will use the results of that paper 
for comparison with the results obtained in the present paper with the aim of understanding 
the extent to which the cross section may depend on the topology of the space of extra 
dimensions. We believe that our results are generic, and that comparable effects could 
actually be obtained in more realistic theories constructed in the framework of the Kaluza- 
Klein approach. We would like to mention that some results on the calculation of one-loop 
Feynman diagrams on the spacetime M4 x TN can be found in [9]. 

A similar problem in the context of orbifold compactifications of the heterotic superstring 
has been considered in [13]. There, the authors calculated some physical proccesses and 
estimated the inverse size of extra dimensions L-' to be of the order 0.1 f 10 TeV depending 
on the model. Some earlier computations of upper bounds on the size L of extra dimensions 
using results of high-energy experiments with the assumption that even the first heavy 
Kaluza-Klein mode is not observed experimentally can be found in [14]. In many models, 
the spontaneous compactification mechanism gives L of the order of the inverse Planck 
mass M i l  (see, for example, [ 151 and the reviews [4]). In this case additional dimensions 
could reveal themselves only as peculiar gravitational effects or at an early stage of the 
evolution of the universe. 

It is true that no natural mechanism providing compactification of the space of extra 
dimensions with larger scale is known so far. However, there are several different 
motivations for considering this case. One of them comes from Kaluza-Klein cosmology 
and stems from the fact that the density of heavy Kaluza-Klein particles cannot be too large 
the critical density of the universe will be exceeded. Estimates obtained in [I61 give the 
bound L-' < IO6 GeV. Another motivation is based on the results of [17,18]. The point 
is that relating L to the supersymmetry breaking scale MSTJSV leads to the cancellation of 
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unwanted threshold corrections in superstring theories for certain superstring models with 
orbifold compactifications [IS]. This opens the possibility of having quite attractive models 
where perturbative calculations are reliable and the perturbative breaking of supersymmetry 
can be implemented. The latter implies the existence of Kaluza-Klein modes with masses 
at the TeV scale (see [19]). Estimates of the magnitude of L-’ in [13], cited above, were 
obtained in this setting. 

As already mentioned, due to its multidimensional nature, the complete theory with 
an infinite number of modes is non-renormalizable. This is not a basic difficulty if the 
theory is considered as some kind of low-energy limit of a more fundamental theory. 
Then renormalization counterterms of the multidimensional model could, in principle, be 
calculated in the fundamental theory, and the corresponding coupling constants should 
be considered as phenomenological constants. Fortunately, the contributions of the 
counterterms of higher-dimensional operators to the finite parts of the amplitudes are of 
the order (s/A2)” [Z], where &is the energy of the colliding particles, A can be regarded 
as a characteristic scale of the fundamental theory (A - MpI in the case of superstrings) 
and n > 1. Thus, when & < L-I << A, these contributions can be neglected. 

Now, if, for instance, the fundamental theory turns out to be one of the superstring 
models with L-’ - Msusy, discussed above, then the same value of L-’ should be 
taken in the corresponding effective Kaluza-Klein-type theory. This explains why in our 
computations we consider the possibility of L-’ being of the order of a few TeV and this 
enables us not only to see the type of effect that the extra dimensions give rise to, but also 
to estimate its order of magnitude, which, we believe, does not depend on the precise form 
of the model. The conclusion is that it should be possible to observe the effect in future 
experiments at supercolliders. Similar calculations for more realistic models and processes 
will be carried out in a forthcoming publication. 

This paper also contains a section of more mathematical character, in which some 
zeta-function regularization techniques I201 that provide a rather elegant way of treating 
sums over Kaluza-Klein modes which appear in the theory are described (for a review of 
these methods see [21]). Though there is some literature on the technique of performing 
calculations on spheres (see, for example, [6,7,9] and references therein), we think that 
this part of our work is interesting in its own right, since several of the formulae that 
appear here are new and provide a non-trivial alternative method for dealing with spherical 
compactification. Some general results on calculations on curved spacetime can be found 
in the review [22]. 

The paper is organized as follows. In section 2, we describe the model, choose the 
renormalization condition and discuss the general structure of the one-loop results. In 
section 3, some useful asymptotic expansions of the corresponding (regularizing) zeta 
function are derived. Methods for the numerical evaluation of the one-loop contribution are 
devised and the amplitude for a wide range of energies is calculated. Section 4 contains an 
analysis of the total cross section in the multidimensional model, and it is compared with the 
cross section for theories with a finite number of heavy particles, as well as with the cross 
section obtained for torus compactification. Concluding remarks are presented in section 5. 
The appendix contains relevant formulae for the Epstein-Hurwitz zeta function and explicit 
expressions of the scattering amplitude, which are used for numerical computations in the 
main text. 

2. Description of the model, mode expansion and renormalization 

Let us consider a onecomponent scalar field on the six-dimensional manifold E = M4 x Sz, 



7536 

where M4 is Minkowski spacetime and S2 is the two-dimensional sphere of radius L. In 
spite of its simpIicity, this model captures many interesting features of both the classical 
and quantum properties of multidimensional theories. The action is given by 
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where x”,  p = 0,1,2,3, are the coordinates on M4, 0’ and O2 are the standard angular 
coordinates on S2, 0 < 6’ < k, 0 -= 8’ < 2rr, and dS2 is the integration measure on the 
sphere. gij is the standard S0(3)-invariant metric on the two-dimensional sphere: 

ds2 = gij de’ d0j = L*[(dO’)* t sin2e’(de2)*], 

To re-interpret this model in four-dimensional terms, we make the expansion of the field 
@ b 9  0) 

w , e )  = C @ i m ( x ) Y , m ( e )  (2) 
Im 

where 1 = 0 , 1 , 2 , .  . . , m = -1, -1 + 1,. . . , 1 -  1. I ,  and YI,(B) are the eigenfunctions of 
the Laplace operator on the internal space, i.e. spherical harmonics, satisfying 

Substituting this expansion into the action and integrating over 8 ,  one obtains 

where the four-dimensional coupling constant AI  is related to the multidimensional coupling 
constant 2 by 2.1 = i/(volume S’). In equation (S), Siot includes all terms containing third 
and fourth powers of $Im with 1 > 0. We see that the model includes one real scalar field 

= & ( x )  describing a light particle of mass mo and an infinite set (‘tower’) of massive 
complex fields &,(x) corresponding to heavy particles, or pyrgons, with masses given by 

M: = m;+l(l+ l ) M  (6) 

where M = L-’ is the compactification scale 
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Figure 1. Tree diagrams contributing to the four-point Grren function r(=). The lines 
Correspond to the light particle, the bar corresponds to derivatives with respect to the external 
momenta 

, Figure 2. One-loop diagrams conlributing to the four-point Green function rcw). Thin curves 
correspond to the lighl panicle with mr mg. The thick curve labelled MI corresponds to 
propagation of the particle with mass MI. 

Let us consider the four-point Green function rfm) with external legs corresponding 
to the light particles $0. The index ‘00’ will indicate that the whole Kaluza-Klein tower 
of modes is taken into account. Diagrams which contribute to this function in the tree 
and one-loop approximations are presented in figures 1 and 2. Terms included in S& in 
equation (5)  are not relevant to our computations. 

Let us first analyse the tree-level contribution. The first diagram in figure 1 is exactly 
the same as in the case of the dimensionally reduced theory with the action given by the first 
line in equation (5). The second diagram appears due to extra divergences in the theory 
and is discussed below. Heavy modes do not contribute at this level. Such a property 
is rather general and is valid for all processes of the type (n light particles) -+ (k light 
particles)-at least in all scalar multidimensional theories with polynomial interactions. The 
reason for this is simple. Suppose that we have a theory on M4 x K ,  where K is a compact 
space, with a polynomial interaction. The analysis of tree graphs shows that, in order to 
obtain a contribution of heavy modes at the tree level, one needs to have at least one vertex 
at which q light modes &(I) (with q < n + k for (n + k) > 2) interact with one heavy 
mode + N ( X ) ,  where the generalized index N corresponds to a non-zero eigenvalue of the 
Laplace operator on K .  After substituting the expansion of the multidimensional field over 
the eigenfunctions of this operator (analogous to (2)) into the original multidimensional 
action, the interaction term 

corresponding to this vertex, will always appear multiplied by the factor 

ldCZYN(6’) Yo.. . YO. - 
p timer 

However, since the eigenfunction YO corresponding to the zero eigenvalue of the Laplace 
operator on the compact manifold is a constant$, the above integral will always be zero, 

t The anthors thank C Nash for useful discussions on this issue. 
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due to the orthonormality condition. This implies, for example, that the decay process of a 
heavy mode with number N into q zero modes is forbidden for the class of models under 
consideratlon. In the case K = S2, the feature discussed here is a manifestation of the 
conservation of angular momentum. 

Let us now analyse the one-loop correction in our model. It is easy to check that, 
owing to the infinite sum of diagrams (see figure 2), the Green function to one-loop order is 
quadratically divergent. This is certainly a reflection of the fact that the original theory is, 
in fact, six-dimensional and, therefore, non-renormalizable. Thus, the divergences cannot 
be removed by renormalization of the coupling constant in equation (5) alone. We must 
also add a counterterm ;iZB@(X, Y ) O ~ ~ + & ~ ( X ,  y). where CI(d+d) is the D'Alembertian on 
E and A ~ B  has mass-dimension two. The second diagram in figure 1 corresponds to the 
contribution of this counterterm. Of course, for the calculation of the other Green functions, 
or of higher-order loop corrections, other types of counterterms are necessary, but we are 
not going to discuss them here. Hence, the Lagrangian we will use for our investigation is 
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where Ale and AZB are bare coupling constants. To regularize the four-dimensional 
integrals, corresponding to the one-loop diagrams of figure 2, we will employ dimensional 
regularization, which is performed, as usual, by performing an analytical continuation of 
the integrals to (4 - 26) dimensions. K will be a mass scale set up by the regularization 
procedure. The sums over I will be regularized by means of the zeta-function technique 
[20,21]. 

Let us now specify the renormalization scheme. It is known that the results of the 
calculation of physical quantities at a finite order of perturbation theory depend on the 
renormalization scheme. Since ow goal is basically to study the difference between the 
contributions corresponding to the complete Kaluza-Klein tower of particles and to the light 
particle only, we should choose a scheme in which the end results are minimally affected 
by the renormalization procedure. A reasonable method is to impose the condition that the 
physical amplitude for the (2 light particles) -+ (2 light particles) scattering process of the 
complete theory and the amplitude of the same process in the four-dimensional theory with 
the zero mode only (i.e. the theory given by Lagrangian (7) with all non-zero modes and the 
last term omitted) must coincide at some normalization (subtraction) point corresponding 
to low energies. As a subtraction point, we will choose the following point in the space 
of invariant variables built up out of the extemal four-momenta pi (i = 1,2,3,4) of the 
scattering particles: 

pf=p:=p;=p:=mi 
(8) 

where p:, = (p1 + p,)', j = 2,3,4,  and s, t and U are the Mandelstam variables. 
Since the subtraction point is located on the mass shell, it satisfies the standard relation 
p: + pf + fiz = 4mt. The renormalization prescription formulated above can be written as 

,Of4 = U = fi: 2 p;z = s = fi; p t 3  = t = fi,2 

(9) r(O0)(p:j: mo, M, ~ I B ,  Azs. ~ ) 1 ~ . ~ .  = r( ')(plj; 2 mo, &, ~ ) l ~ , ~ .  = gK Z f  
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Here, reo) is the four-point Green function of the four-dimensional theory with zero-mode 
field only (i.e. the dimensionally reduced theory), A',B being its bare coupling constant. In 
equation (9), we have written down explicitly the dependence of the Green functions on 
the momentum arguments and parameters of the theory, and we have taken into account 
that to one-loop order they depend on p t ,  p:3 and p:., only. The label s.p. means that the 
corresponding quantities are taken at the subtraction point (8). g and hz are renormalized 
coupling constants; the latter are included for the sake of generality only, and we will see 
that our final result does not depend on it. 

For the usual Ay$-theory in four dimensions, the renormalization condition given by (9) 
alone is sufficient, whereas both conditions (9) and (10) are necessary for subtracting the 
ultraviolet divergences of theory (7), because of the presence of additional divergences due 
to its multidimensional character. 

To one-loop order, the Green functions of the complete theory and of the theory with 
the zero mode only, a e  given, respectively, by 

and Klm is the contribution of mode @llm with mass MI = Jmz + MZl(l + 1) (see 
equation (6)) to the one-loop diagram of two light particles scattering 

KO corresponds to the first diagram in figure 1 and A K  corresponds to the contribution of 
the sum term in figure 2. Here we assume that h 2 ~  - A&, so that the one-loop diagrams 
proportional to AIBAIB or A&, can be neglected. It can be proven that this hypothesis is 
consistent (see [IO]). Note that if we did not make this assumption, proper control of the 
proliferation of the divergences would become very difficult. Function I ,  in the formula 
above, is the standard one-loop integral 

Let us also introduce the sum of the one-loop integrals over all the Kalua-Klein modes 
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so that 

A K ( P : ~ ; ~ ~ , M , E )  
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Performing the renormalization, we obtain the following expression for the renormalized 
four-point Green function: 

where we denote pi = w:, fi; = p; and p: = pi. The right-hand side of this expression 
is regular in E and, after calculating the integrals and the sums over I and m, we take the 
limit E + 0. The above expression is rather general and valid for any arbitrary subtraction 
point. It simplifies if the relation p: t p; t pi = 4mf fulfilled by subtraction point (S), is 
taken into account. Before doing this, let us dkcuss the s f ~ ~ ~ c t u r e  of the renormalized Green 
function fur a subtraction point where all subtraction scales are equal: p: = = pi = P*. 
Then equation (16) can be written as 
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As mentioned above, the contribution AI of the heavy modes contains quadratic divergences 
in momenta (in the framework of the dimensional regularization used here this means that 
it contains singular terms - 1 / ~  and - p 2 / 6 ) .  The renormalization prescription amounts to 
subtraction of the first two terms of the Taylor expansion of this contribution at the point 
f i2 ,  which is suf6cient to remove the divergences. Conhibution KO of the zero-mode sector 
(the dimensionally reduced theory) diverges only logarithmically and subtraction of the first 
term of the Taylor expansion-imposed by renormalization prescription (9-1s sufficient 
to make it finite in the limit E -+ 0. 

Finally, let us write down the expression for the four-point Green function of the 
complete theory (i.e. with all the Kaluza-KIein modes) renormahed according to conditions 
(9) and (10) at subtraction point (8) and taken at a momentum point which lies on the mass 
shell of the light particle. We get 

= g + g2 I i m P  [ ~ o ( s ,  t ,  U ;  ma, E )  - KO(@:, fi:, p:; ma. E )  

x A K ( s ,  t ,  U ;  mo, M, E )  - AK(f i ; ,  fi?, fii; mo, M ,  €11 . 
E 4 0  

(18) 

The variables s, t and U are not independent, since they satisfy the well known Mandelstam 
relation s + t + U = 4mi. 

The formula above is rather remarkable. It turns out that on the mass shell, due to 
cancellations among the s-, t- and u-channels, the contribution proportional to hz and the 
terms containing derivatives of the one-loop integrals vanish. Thus, heavy Kaluza-Klein 
modes contribute to the renormalized Green function on the mass shell in exactly the same 
way as the light particle in the dimensionally reduced theory. Indeed, it can easily be checked 
that the additional non-renormalized divergences arising from the infinite summation in AK 
cancel among themselves when the three scattering channels are added together. 

3. Calculation of the one-loop contribulion 

In thii section, we will analyse the one-loop contribution of the heavy Kaluza-Klein modes, 
develop methods for its numerical evaluation and present results for the amplitude of (2 light 
particles) + (2 light particles) scattering. 

The starting point of the analysis is the expression 

(see (14) and (15)), where the prime means that the term for 1 = 0 is absent from the 
summatory. Performing the E-expansion and integrating over the x-variable in equation (14), 
we obtain: 

where J ( z )  is the finite part of the one-loop integral [23] 

J ( z )  = dxln[l - 4 z x ( l - x ) ]  l 
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which is equal to 
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for z < 0 

for 0 < z < 1 (22) 

Now we can proceed with the summation over I and m. Taking the degeneracy in (19) into 
account and using <-regularization for the sums, we get 

In particular, for pz < 0, 

while for p2 5 0 

which contains, in general, an imaginary part. Here P ( p )  is the maximum value of I 
which satisfies the inequality 4M2(l  + i)' < p 2  - 4mi. If such an 1 does not exist, or 
if it is smaller than 1, we set l * (p )  = 0 and the first sum in equation (25) is absent. As 
already mentioned, the divergent sums over I are understood as beiig regularized by the 
zeta-function procedure. These formally divergent series, which are independent of p2 or 
are linear in p z ,  do not contribute to physical (renormalized) quantities (see the discussion 
in section 2). 

The calculation is now performed by using the zeta-function method. As we clearly 
see from equation (23) above, the number of terms contributing to each sum changes with 
p,  Thus, different explicit series are obtained for the different ranges of M 2 / p 2 .  The first 
range lp2/4M:I < 1 is somewhat special and deserves careful treatement. Expanding the 
functions under the summation signs in powers of UI = p 2 / ( 4 M f )  we get 

m U{ 214: 8 ~ :  1 6 4  128~: 256~7 + 4 i n 2 C ( i +  3 )  - + - + - + - +-+-+... 
I= I ( 3  15 105 315 3465 9009 

+ 
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which is valid for small values of m i / M 2 ,  including the case mi = 0. The sums over 
the eigenvalues for the spherical compactification give rise to the inhomogeneous Epstein- 
Hurwitz zeta functions 

We reexpand equation (26) to give an expression which is absolutely convergent in 
p2/(4M!) whenever mi/M2 < 512 [6,22,24,25]. In this way, we obtain 

Here 

Superscripts (1) mean ‘truncated’, in  the sense that the first term in the definitions of these 
zeta functions (the one for I = 0) is absent. The following relation holds: 

where function F was introduced in equation (27). Some properties of these functions and 
numerical values for some of the coefficients ck in equation (28) are given in the appendix. 
The term with k = 1, which is formally divergent (see equation (30)), disappears from the 
final expression after renormalization. Functions { ($ ,a )  and <(‘)(s,a) are also defined in 
the appendix. 

For higher positive values of p z ,  contributions of a new type appear (corresponding to 
the first sum in equation (25)). The expression for A l ( p 2 / M z ,  m o / M ,  E ) ,  which converges 
for 4(mt + 2M’) < p z  < 4(mi + 6 M Z ) ,  is given by equation (45) in the appendix. 
Equations (28), (45) and similar expansions for other intervals for higher momentum turn 
out to be quite effective for very accurate numerical computations of the total cross section 
of the (2 light particles) + (2 light particles) scattering. Results are presented in the next 
section. 

4. Calculation of the total cross section 

In this section, u’e calculate the total cross section U(-)@) of the scattering process (2 light 
particles) (2 light particles) in the case when the whole Kaluza-Klein tower of heavy 
particles contributes, and we compare it with d N ) ( s ) ,  the cross section obtained for the case 
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when only the first N modes are taken into account (i.e. modes with 1 = 0 . 1 . 2 , .  . . , N ) .  
With this notation, d0)(s) is the cross section in the dimensionally reduced model, i.e. 
when only the light particle contributes. Such a comparison will be quite illuminating for 
understanding the relative contributions of the various heavy modes. 

We have found that the quantity which describes the net effect due to the tower of heavy 
particles is the following ratio, which is built up from the total cross sections: 
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Using expression (18) for the four-point Green function, renormalized according to (9) 
and ( l o ) ,  we calculate the corresponding total cross sections and obtain that, to leading 
(one-loop) order in the coupling constant g, function (31) is equal to 

2 
- A J ( -  I L : . ? !  ) - A J  ( ”  - ~“‘)>-AJ(”-.””)I - (32) 4 M 2 ’  M 4 M Z ’  M 4 M Z ’  M ‘ 

Here, we assume that fi:. p:, p: c 4 m i .  
For the numerical evaluation, we take the zero-mode particle to be much lighter than the 

first heavy mode and choose the subtraction point to be at the low-energy interval. Recall 
that p: + fi; + F: = 4 4 .  We take 

First of all, we observe that if the parameters of our theory satisfy p: <<mi < M 2  (notice 
that for our choice (33) these inequalities are indeed fulfilled), the dependence of the function 
A(”’) on & : / M 2 ,  p ? / M 2 ,  $JM2 and m i f M 2  is very weak, and in practice it depends 
only on one dimensionless parameter. We choose this parameter to be z = s f (4M:) .  

Using the results of section 3 we can calculate the function A(-.’)(z). Its plot in the 
range 0 c z c 1 is presented in figure 3. We see that the contribution of the Kaluza-Klein 
tower of particles is considerable. Thus, N 0.51 fors = 0 . 5 ( 4 M t )  and A@“’) ‘v 0.12 
for s = 0.25(4M:).  Therefore, for energies much smaller than the one corresponding to the 
threshold of the first heavy particle, the effect is already quite noticeable. 

We also note the quick convergence of the sums over I in equations (24). ( 2 5 )  and 
(28) ,  conhibuting to the function A(m,o)(z). A few terms already give curves which do 
not change when more summands are added (we have checked indeed that the sum up to 
1 = 50 in the above series is, for all practical purposes, identical to the sum of the 20 first 
terms). Owing to the convergence of the sums, only the first few terms with low I give 
essential contributions, whereas those corresponding to the higher modes are negligible. 
To understand how many modes we really see from the plot of further analysis is 
needed. With this purpose, in figure 3 we also present the curve A(‘*O)(z), characterizing 
the contribution of the first heavy mode only. We observe that the difference is not small 
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Figure 3. Plots of functions Atm,')(z) and A",m(z) in the interval 0 < z < 1 for the spherical 
compactification. 

(0.3 for z = 0.5 and 0.05 for z = 0.25) and the function A("so)(z) within a few per cent 
accuracy represents more than just the first mode. 

To obtain more illustrative characteristics, we introduce the quantities 

(34) 

which show the relative contributions of  the first N heavy Kaluza-Klein modes. The plots 
for some E N @ )  are presented in figure 4 for 0 < z < 1. We conclude that with an accuracy 
of about 5 i lo%, the function A(mso)(z) in the range s - 0.8M: t 2.4M: actually shows 
the presence of at least 3 i 4 first heavy modes in the theory. 

Another interesting question is how the contribution of the heavy Kaluza-Klein modes 
depends on the topology of  the space of extra dimensions. Here, we restrict ourselves only 
to comparison of the results for A$w".O'(z) calculated in this article ('S stands for 'spherical 
compactification'), with the behaviour of A:".O'(z) for the toroidal compactification obtained 

Figure 4. Plot. of the functiom f M ( z )  defined by equation (34) for N = I ,  2.3.4.5; c,(z) E 1. 
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Z 

Figure 5. Plots of functions A$”.”(z) and A:m,O’(z) in the interval 0 c z < 1 for 
compactifications of e x m  dimensions lo the two-dimensional sphere SI and to lhe IWO- 

dimensional IONS T’. respectively. In both cases the dimensionally reduced models are the 
same and scales characterizing these manifolds are chosen in such a m y  lhat ZM: = M:. so 
that the m w e s  of the first heavy particles of the Kaluw-Klein towers are equal. 

in 1121 for a similar model but with a spacetime M4 x T’, where T 2  is the two-dimensional 
torus. It is clear that the results of the comparison depend on the relation between the 
inverse radius of the sphere MS = L-’ (for further discussion we have attached the index 
‘S’ to it) and the scale MT equal to the inverse radius of the circles forming the torus 
T z  = St  x S’. For the present analysis, we asume that in both compactifications, the 
dimensionally reduced models, i.e. zero-mode sectors of the initial theories, coincide and 
that the masses of the first heavy modes are the came. These imply that, in both cases, the 
mass mo of the zero mode is the same and 

2 M i  = M:. (35) 

PIots of functions Ai-”.) and A$-’” for 0 < z < 1 are presented in  figure 5. The difference 
between the curves is quite noticeable (for example, A$w*ol - ALwm.O1 = 0.25 for z = 0.5 and 
it is equal to 0.06 for z = 0.25). This is due to the difference in the spectra of the Laplace 
operator on the sphere and on the torus. Namely, for the two-dimensional sphere Sz, the 
eigenvalues Al(SZ) of the Laplace operator, the squares of the masses of the Kaluza-Klein 
modes determined by them and the multiplicities dI(S’) of the eigenvalues are given by (cf 
equation (6)) 

(M,(”)’ =mi + ~ , ( s ’ ) M :  Al(S2) = I ( [  + 1) dI(S’) = U + 1 (36) 

respectively. For the two-dimensional torus T 2 ,  the analogous relations are: 

(M:~’)’ = mg + A,,(T~)M; A.(T’) = n: + n: (37) 

where n = (n l .nz)  is a two-vector labelling eigenvalues -CO c ni < 03 (i = 1.2) 

and dInl(Tz) i s  the number of such vectors with the same length In1 = m. Using 
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Figure 6. Plot of function Ai"."(r) for the spherical compactification for 0 < L c 21, i.e. UP 
to the threshold of the sixth heavy mode. 

expansions similar to (26) and &quation (32). we get that, for IzI < 1, 

Here, the index (Y labels the type of compactification, e.g. a = S for the case of the sphere 
and (Y = T for the case of the torus, and F(sl Ka) is the zeta knction of the Laplace operator 
on the manifold Ka [201 (see also [26]) 

where the prime means that the term corresponding to the zero eigenvalue is absent from 
the sum. For Ks = S2, this function can be expressed in terms of the derivative of the 
generalized Epstein-Hurwitz zeta function (27): 

Taking into account relation (35) between M i  and M;, we obtain an approximate expression 
connecting the ratio of the contributions of the two Kaluza-Klein towers of particles, 
corresponding to the spherical and toroidal compactifications, with the characteristics of 
the Laplace operator on these manifolds 

The results of our numerical computations (figure 5) are, with good accuracy, in accordance 
with formula (40). 
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Table 1. Table of values. 

L 0.1 0.25 0.5 0.75 0.99 

Aiw" 0.0181 0.1165 0.5111 1.361 3.969 
A!'" 0.0136 0.0888 0.3982 1.103 3.508 
A.?'m 0.0271 0.1749 0.7626 2.008 5650 

Using equation (45) and similar formulae for higher momentum intervals, we have 
also calculated the function A~m".O'(z.) for 1 .c z c 21. Its plot is presented in figure 6 
and demonstrates the appearance of resonances. The peaks of the curve correspond very 
approximately (since mo j4 0) to the values s = 4M,? or z = l(l+ 1)/2 for I = 1,2,3,4,5.6, 
i.e. to the thresholds of heavy-mode particle creation. 

5. Conclusions 

In this paper, we have studied the behaviour of the total cross section for the scattering of two 
light particles in an effective theory in four dimensions, obtained from the six-dimensional 
scalar theory with spherical compactification of two extra dimensions. 

Even if our model cannot be termed directly as being physical, we do believe that the 
effect we have calculated is of a very general nature, and that it will also take place in more 
realistic theories. Provided that tQe scale L-' is of the order of Msusy (see the introduction 
for a discussion of such a possibility) and that we calculate a real process, the corresponding 
results can, in principle, be used for comparison with actual experimental data. The idea is 
as follows. 

We assume that the low-energy sector of the theory is already well determined. 
Therefore, the value of the renormalized coupling constant g is known and the total cross 
section o(O)(s) can be calculated with sufficient accuracy. Experimentally, one should 
measure the total cross section acxP(s) and compute the quantity 

(cf (31)). If, above the threshold for the lightest particle. one has that Aexp(s) = 0, then 
there is no evidence of heavy Kaluza-Klein modes at the given energies. 

On the contrary, Amp($) # 0 indicates the presence of heavier particles. The obvious 
next step will be to see which curve AFfol(s) fits the experimental data best. If it is the curve 
with N = CO (or sufficiently large N )  for a certain manifold K, this fact will be considered 
as indirect evidence of the multidimensional nature of the interactions-at least within the 
framework of the given class of models and for that type of compactification. As we have 
shown some information about the regularity of (at least the first) mass eigenvalues and 
their multiplicities is already encoded in the behaviour of the function fors  4 4M:, 
up to a certain accuracy. Thus, one can hope that from this it will be possible to distinguish 
Kaluza-Klein-type models from, say, grand unified models with a finite number of heavy 
particles. To have more concrete criteria for such distinction, further investigation is needed. 
It would also be interesting to understand whether one can possibly distinguish between 
multidimensional models and certain models with an infinite tower of composite particles. 

Having in mind the possibility of L-' - Msusy, we have choosen for our computations 
the values of the parameters which can mimic a physical situation with, for example, 
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mo = 100 GeV and M = IO TeV, and with the charge g renormalized at the low-energy 
point @ = 10 GeV (see equations (33)). The results suggest that, indeed, the effect can 
be quite noticeable, even for energies below the threshold of the first heavy particle (see 
figure 1). 

Our results also show that one can distinguish between different types of compactifica- 
tion of the extra dimensions. The main contribution, for energies below the threshold of the 
first heavy-mass state, is basically determined by the zeta function 5(21K), uniquely asso- 
ciated with the two-dimensional manifold K through the spectrum of the Laplace operator 
on it. This provides, by the way, a further example of the relevance of the concept of zeta 
functions in high-energy physics. 

Of course, one should not forget that the effect studied here is a one-loop order effect 
and, obviously, therefore difficult to detect experimentally. Because of this, an interesting 
possibility, in a more realistic model, would be to consider specific processes for which the 
tree approximation is absent and the leading contribution is given by the one-loop diagrams 
even in the zero-mode sector of the theory. Such processes are clearly more sensitive to 
the heavy Kaluza-Klein modes. 

A few remarks on the influence of the choice of the renormalization scheme and of the 
renormalization point follow. Conditions (9) and (10) define a renormalization scheme with 
manifest decoupling of heavy Kaluza-Klein modes. This means that in the limit sLz, p.&, 
moL -+ 0, the Green function and the cross section coincide with those in the ordinary gq54 
theory in four dimensions, renormalied according to the second equality in equation (9). 
In the case of a renormalization scheme without manifest decoupling, in order to have a 
physical interpretation of the low-energy limit of a given multidimensional model, further 
finite renormalizations of the coupling constants and masses will be necessary. Once they 
are performed, the results will be equivalent to a certain scheme with manifest decoupling. 
See the discussion of these issues in [lo, 111. 

Choosing a renormalization scheme, with manifest decoupling different from (9) and 
(IO), would lead to finite renormalizations of the coupling constants g and hz in the next- 
to-leading order, i.e. - gz. The renormalization of hz would not affect the result (32) due 
to the mass shell cancellations among the s-, t -  and u-channels explained in section 2. The 
finite renormalization of g would amount to a finite addition (containing terms constant and 
linear in s) to the right-hand side of (32), which vanishes in the limit sLz, p S L ,  moL -+ 0. 

Provided that the renormalization scheme is that given by equations (9) and (IO), the 
result depends on the choice of renormalization point. The dependence of the renormalied 
coupling constants on ps is determined by renormalization-group equations similar to those 
for the torus compactification derived in [IO, 111. Changing pLs again amounts to a finite 
renormalization of g and hz, and a corresponding finite addition to A(m*o), as discussed 
above. Here, two final comments are in order. First, the value of gLu,) can always be 
chosen to be sufficiently small so that the Landau pole of the solution of the renormalization- 
group equations for the running coupling constant g, which is independent of hz (see [Ill), 
is located much further away than the thresholds of the first heavy modes. Thus, we expect 
that a finite addition to though power-like rather than logarithmic in ps, will not 
considerably change our result around the threshold of the first heavy particle. Second, 
although function (32) does not depend on the renormalization of Az, in our one-loop 
calculations in section 2, we assumed that h~ 6 gz. If hz = 0, or if it is finely tuned to 
be small enough, the inequality for the running coupling constants remains valid at least 
until the threshold of the first heavy particle is reached. A more detailed analysis of the 
contributions to due to the finite renormalizations, as well as of the effect of two-loop 
corrections, is beyond the scope of the present paper. 
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Appendix 

Some useful and mathematically elegant expressions for functions F(s; a, b) (equation (27)) 
and hc')(s; 1/2, b) (equation (29)) have been obtained in [27] (see also [21]). In particular, 
use of the zeta-function regularization theorem yields 127,211 

which, in spite of the equality siqn, should be understood as an asymptotic expression, not 
as a convergent series expansion. (It is noticeable that this very non-trivial result cannot be 
obtained by using just the Jacobi theta-function identity.) The optimal cut of this series has 
been numerically studied in detail [24], Now taking into account equation (30), we obtain 

where 

r(s, a) is the Hurwitz (also called the Riemann-generdized) zeta function defined for s > 1 
by the series 

Actually, the following simple relation holds: 

f ( s ,  a) = -SY(S + 1, a) (43) 

and, for the few first terms in equation (42) (providing the best cut of the asymptotic series), 
we get 

1 
h'l'(s: 1/2, b) = b'-" [ - - , + Zb-'<(-l. 1/2) - 2 ~ b - ~ ( ( - 3 ,  l j2) 
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We have used the fact that the coefficient - i ( O ,  1/2) = 1, however 

The same result is obtained from equation (43) in the l i t  s --t 0. Numerical values of the 
Hurwitz zeta function are 

<(-1,1/2) = & <(-3,1/2) = -& <(-5,1/2) = 8064 

511 <(-7,1/2) = -em <(-9,1/2) = -67584,. . . . 

We see, in fact, that the best cut of asymptotic expansion (44) is obtained after { ( -5 ,  1/2) = 
0.003 84. 

In equation (28), function < " ) ( s , a )  is the truncated Hurwitz zeta function 

k-1 

~ ' ~ ' ( s .  1 / ~ )  = <(s, 1/2) - C(n + 1/2)-' k = 1,2,3, .  . . 
" 5 3  

whereas the numerical values of the coefficients Ck are 

26 
c3 = - 

3 . 5 . 7  

7 . 9 . 1 1  .13'"" 

28 
y = - 

5 . 7 . 9  
2 23 
3 c 2 = -  3 . 5  

c, = - 

220 
c.5 = 

2'2 
c5 = 

5 . 7 . 9 . 1 1  

For 4(mi + 2M2) < p 2  < 4(mt + 6 M 2 )  the following convergent expansion can be 
obtained for the functions (23) and (25): 

m 

=in2- ' r (~) [2<(-1 , f ) -  1 ] - 2 i n z ~ ( 1 + ~ ) I n [ ( l + ~ ) Z + b 1  
IC1 
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Here 
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A useful asymptotic expression for the derivative c'(-l, 1/2) can be found in [28]. By 
analogous methods, expansions for p z  < 0 can be performed. 
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